
nnn - Nick's Neural Network

Nicholas d'Alterio & Gideon Denby

July 11, 1995

Contents

1 Introduction 2

2 Quickstarter 2

3 How to use nnn 2

3.1 The Con�guration File : : : : : : : : : : : : : : : : : : : : : : 2

3.2 Training the Neural Network : : : : : : : : : : : : : : : : : : : 5

3.3 Classifying Unknown Vectors : : : : : : : : : : : : : : : : : : 5

3.4 Other Command Line Options : : : : : : : : : : : : : : : : : : 6

3.5 Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

4 Bugs 7

5 History 7

6 Release Conditions 8

7 A Quick Plug 8

1



1 Introduction

This program is an implementation of a fully connected feed forwards neural

network with error back-propagation.

It o�ers the chance to train the network, which can be any size, in multiple

stages with each stage containing up to 1000 training vectors. Once trained

the network may be used to classify other vectors. The program is fully

con�gurable and but simple to use.

2 Quickstarter

The con�guration �le included with the distribution is set up to train a neural

network with the XOR problem. To use simply type:-

%> nnn < nnn.conf > nnn.trained.conf

This will train the neural network with the XOR vectors until 100% of the

neural networks outputs agree with the target values to within a di�erence

of 0.1.

The output �le will contain an updated con�guration �le which will now

have the �nal weights of the neural network stored. This can now be used to

�nd out what the output of any of the XOR vectors should be. This is done

by editing the con�guration �le and deleting the number at the end of the

line in the last four lines of the �le, then run the program as follows:-

%> nnn -i < nnn.trained.conf > nnn.classified.conf

This will print to the screen what the output of each of the vectors should

be. In addition these values will also be placed in the new con�guration �le

where the numbers were previously deleted.

For a list of command line options use the -h option.

3 How to use nnn

3.1 The Con�guration File

This section describes the format of the con�guration �le for the nnn pro-

gram.

The top few lines are generally comments which describe the �le purpose

and the purpose of the number below. The comment symbol is the # which

2



appears at the start of a line indicating to the program that the rest of the

line may be ignored.

The �rst non comment line contains the following numbers separated by

spaces:-

1. The number of layer that the neural network will have. This number

is generally set to 3 since a three layer network with more nodes is

generally equivalent to network with more layers. This number is not

restricted in its maximum size but should not be less than 2. It must

be an integer.

2. The learning rate for the network. This is a oating point number which

a�ects how the network learns. The higher the number the faster the

network will be trained, however this has the side e�ect that the initial

behavior is erratic and the �nal accuracy is less. If it is too high the

network may never learn. Lower numbers mean slower training but

more accurate results. The standard value used during test was 2.0

3. The gain factor. This is a oating point number which a�ects the slope

of the sigmoid function, the higher the number the greater the slope.

Increasing this may improve the network performance however taking

it too high will cause the sigmoid to quickly saturate. Set this equal to

1.0 for standard neural network.

4. The momentum factor this is a oating point number in the range 0 to

1. Its purpose is to keep the network moving towards its �nal answer.

It has the potential to vastly increase the rate of convergence but may

also introduce extra local minima. Set the momentum factor to zero

to go back to a tradition back propagation neural network.

5. A seed for the random number generator.

6. The accuracy that the neural network must achieve for the program to

decide that it has learnt a particular vector correctly. This is a oating

point number in the range 0 to 1, the smaller the number the more

accurate.

7. The percentage of vectors that the network must learn before stopping

the training process.

All the above options except for the number of layers may be overridden

by command line options.

3



Next in the �le is a marker #Layers which indicates that information

about the network size follows. There must be as many lines as speci�ed in

the previous section number of layers.

Each line should contain an integer which is the number of nodes that

particular layer in the network will contain with the top line being the input

of the neural network. It is important that the number of nodes on the

input layer and the number of nodes on the output layer match the number

of inputs and outputs in the training vectors that will be applied to the

network. There is no limitation on the size of the number here.

e.g.

#Layers Marker

2 Number of nodes in input layer

2 Number of nodes in hidden layer

1 Number of output nodes

If the network has not been previously trained the next marker will be

#Vectors otherwise it will be #Weightswhich will be followed by the a single

line containing all the weights obtained during training. This is generated

by the program.

The the end of the �le in therefore always marked by the #Vectorsmarker

which is followed by a number of lines each containing one vector. A vector

consists of a bias, the input vector, and the expected outputs for that input

vector. There is a limit of 1000 vectors in any run of the program.

The biases are extra normalising nodes for the neural network to prevent

the output from getting out of control. Each layer of the network has one

bias node and its value is given by the bias of the �rst vector, in addition the

other vectors may have independent biases. In normal operation all biases

are set to -1.

e.g.

#Vectors

-1 0 0 0

-1 0 1 1

-1 1 0 1

-1 1 1 0

bias input vectors expected output

NOTE The program currently does not have much error checking when

parsing the con�guration �le. Therefore the user must ensure that the �le is

exactly as described above or there may be unpredictable results.

4



3.2 Training the Neural Network

To train the neural network �rst choose the network parameters and con-

struct a con�guration �le with the training vectors at the bottom. Then run

the program with the command:-

%> nnn < nnn.conf > new.nnn.conf

The program will then begin to train the network to the desired level of

accuracy. If the network succeeds in the training it will print a message to

the screen describing the percentage of vectors classi�ed correctly and the

number of iterations that it took to achieve it. If the network fails then a

message will be printed stating the �nal classi�cation level.

In both cases the weights will be saved in the �le new.nn.conf which can

then be used for classifying unknown vectors or further training.

An alternative to printing a con�guration �le is to print a graph of ac-

curacy against number of iterations. This is done with the -g command line

option.

NOTE The network will only classify output nodes to be either 0 or 1

so to train a neural network with a data set which has 2

n

possible outcomes

there must be n output nodes.

%> nnn -g < nnn.conf > graph.file

3.3 Classifying Unknown Vectors

For this it is necessary to have a con�guration �le containing the weights at

the end of training. Edit this �le and replace the vectors section with the

set of biases and inputs that need to be classi�ed. Then run the program as

usual with the -m command line option.

%> nnn -i < nnn.trained.conf > nnn.classified.conf

This will classify each output node to be either 0 or 1 depending on the

values after the vector to be classi�ed has been fed through the network.

These values will be printed both to the screen and to the �le so that they

follow the input part of the vector.

If no weights are present in the con�guration �le the program will print

a message and exit.

5



3.4 Other Command Line Options

In addition to the command line options already mentioned there are a few

command line options which enable the user to change the network settings

without editing the con�guration �le. These are of the form

%> nnn -s 1024 < nnn.conf > nnn.new.conf

The above example sets the seed to be 1024. These command line options

override any values found within the con�guration �le. They include:-

-r sets the learning rate

-m sets the momentum factor

-s sets the seed for the random number generator

-a sets desired accuracy for network to attain

-c sets the percentage of vectors to classify correctly

-k sets the gain factor

3.5 Problems

There may be occasions where the neural network will not converge towards

the expected output and there are often many reasons for this. This section

will attempt to make some suggestions to improve the chances of correct

training.

1. Use the -g option to see how the training proceeds.

2. Try changing the learning rate. A low learning rate may become stuck

in a local minima whilst a high rate may never settle down.

3. Adjust the momentum factor. This may increase the speed of conver-

gence of the network.

4. It may be that the random series generated by the seed gets the network

stuck.

5. Think about reducing the accuracy that is expected from the network,

there will be situations where it is just not possible to get very accurate

results.

6



6. Reduce the percentage of vectors that is expected to be classi�ed cor-

rectly during training. It is often the case that all but a couple of

vectors will classify.

7. When using binary vectors try having 0 as 0.1 and 1 as 0.9 this moves

the output away from the at area on the sigmoid function and increase

the chance of convergence.

8. It may be that there are not enough hidden nodes to correctly de�ne

the problem. Increasing the number of hidden nodes generally speeds

up convergence to the correct output.

9. Do NOT expect to train to get an output of greater than one. This is

outside the range of the sigmoid and will therefore NEVER be success-

ful.

10. If the sigmoid is saturating make this value small so that the slope is

decreased.

11. As a last resort it may be worth adjusting the value of the biases

however this is not recommended.

There are cases where this type of neural network is not appropriate and

there are certainly cases where this is not the best solution so experiment a

bit.

4 Bugs

At present there are no known bugs. However there are circumstances in

which the program will crash if not used correctly.

For example if an option which requires a numeric argument is used with-

out the argument a non-existent array element will be accessed.

If the program is used as detailed in this document there will be no

problems.

If you �nd a bug or edit this program please send details to n.dalterio@ic.ac.uk

5 History

This is out third attempt at writing a neural network program and was

designed to be easy to read and understand unlike all other neural network

programs we have managed to obtain in source form.

7



The main reason for the problems in getting a working neural network

program originate with poorly written books on the subject which don't

make there notation clear and consequently have impossible to understand

algorithms.

In addition there are many points which are not mentioned in books but

are essential to getting the program to work correctly.

6 Release Conditions

There are none, but I accept no responsibility for things that may happen

because to its use.

7 A Quick Plug

This program was created as part of a project for my Physics degree , for the

full report and other work I have done see

http://crab.sp.ph.ic.ac.uk/~projects/nick_gid/index.html

8


